Dr. Marques Sophie Office 519

Algebra 1

Spring Semester 2017 marques@cims.nyu.edu

Problem Set #5

Exercise 1:

If $S \neq \emptyset$ subset of G then $W_S = \{a_1 \dots a_r : r < \infty, a_r \in S \cup S^{-1}\}$ is a subgroup and is equal $\langle S \rangle$.

Exercise 2 :

In $(\mathbb{Z}/12\mathbb{Z}, +)$, determine the subgroup H generated by :

- 1. [2].
- 2. [3].
- 3. [2] and [3].

Exercise 3:

Prove that if H is a subgroup of $(\mathbb{Z}, +)$, $\exists m \ge 0$ in \mathbb{Z} such that $H = m\mathbb{Z}$.

Exercise 4 :

In $(\mathbb{Z}/12\mathbb{Z}, +)$, find all [k] that are cyclic generators with respect to (+). We are looking for a = [k] with additive order $o(a) = |\mathbb{Z}/12\mathbb{Z}| = 12$.

Exercise 5 :

Suppose a group element $x \in (G, \cdot)$ has the property $x^m = e$ for some integer $m \neq 0$. Then x has finite order o(x), but the exponent m might not be the order o(x) of the element x. Prove that any such exponent m must be a multiple of o(x). (Hint : Letting s = o(x), write m = qs + r with $0 \leq r < s$).

Exercise 6:

Prove that (U_8, \cdot) is not cyclic. Prove that (U_7, \cdot) is cyclic.

Exercise 7 :

If a group G is generated by a subset S, prove that any homomorphism $\phi : G \to G'$ is determined by what it does to the generators, in the following sense :

If $\phi_1, \phi_2 : G \to G'$ are homomorphisms such that $\phi_1(s) = \phi_2(s)$ for all $s \in S$, then $\phi_1 = \phi_2$ everywhere on G.

This can be quite useful in constructing homomorphisms of G, especially when the group has a single generator.